NICOTINE CONTAMINATION ON SOFT CONTACT **LENSES OF DIFFERENT MATERIALS**

▲ Department of Materials Science, University of Milano – Bicocca IT • Optic and Optometry Center of the University of Milano - Bicocca (COMiB) IT School of Life and Health Sciences, Aston University, Birmingham UK

INTRODUCTION

- Deposits on the surface of contact lenses (CL) can have a negative impact on tear film, ocular surface, comfort and ultimately on vision performaces
- Nicotine, present in smoke, can deposit on CLs¹

Aston University

• Both smokers and non smokers are exposed to nicotine

PURPOSE

Comparison of *in-vitro* NICOTINE CONTAMINATION on different CL materials

1 Exposition of each lens for 10 minutes to a 2mM nicotine solution

The spectrum of the clean CL was numerically subtracted from the spectra of each CL after the exposure to the nicotine solution

Measured absorbance was then compared to expected absorbance at the equilibrium (assuming a CL hydration with 2 mM nicotine solution)

MEASURED/EXPECTED ABSORBANCE RATIO

A peak centered at about 260 nm

suggests the presence of nicotine²

RESULTS

FDA Group	Measured/Expected ratio (Range)
I.	0.2 - 0.4
II	0.8 - 1.0*
IV	2.1 - 2.4
V	0.2 - 0.4

***** Discrepancy: Nesofilcon A measured/expected ratio was 0.3

Water Content (%)

CONCLUSIONS

Similar affinity for materials of the same FDA Group

CL chemical properties affect *in-vitro* nicotine affinity

HIGHEST AFFINITY Group IV

Ionic high water

LOWEST AFFINITY Group V Silicone hydrogels

2. Clayton PM, Vas CA, Bui TT, Drake AF, McAdam K. Spectroscopic studies on nicotine and nornicotine in the UV region. Chirality. 2013 May;25(5):288-93.